Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurochem Int ; 176: 105745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641025

RESUMEN

Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Butiratos/uso terapéutico , Butiratos/farmacología , Butiratos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico
2.
Neurobiol Dis ; 179: 106051, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822548

RESUMEN

Emerging evidence suggests the presence of bidirectional interactions between the central nervous system and gut microbiota that may contribute to the pathogenesis of neurodegenerative diseases. However, the potential role of gut microbes in forms of spinocerebellar ataxia, such as the fatal neurodegenerative disease Machado Joseph disease (MJD), remains unexplored. Here, we examined whether gut microbiota alterations may be an early disease phenotype of MJD. We profiled the gut microbiota of male and female transgenic MJD mice (CMVMJD135) expressing human ATXN3 with expanded CAG repeats (133-143 CAG) at pre-symptomatic, symptomatic and well-established stages of the disease (7, 11 and 15 weeks of age, respectively). We compared these profiles with the gut microbiota of male and female wild-type (WT) littermate control mice at same ages. Correlation network analyses were employed to explore the relevance of microbiota changes to disease progression. The results demontrated distinct sex-dependent effects in disease development whereby male MJD mice displayed earlier motor impairments than female MJD mice. The gut microbiota community structure and composition also demonstrated sex-specific differences between MJD and WT mice. In both male and female MJD mice, the shifts in the microbiota were present by 7 weeks, before the onset of any symptoms. These pre-symptomatic microbial changes correlated with the severity of neurological impairments present at later stages of the disease. Previous efforts towards developing treatments for MJD have failed to yield meaningful outcomes. Our study reports a novel relationship between the gut microbiota and MJD development and severity. Elucidating how gut microbes are involved in MJD pathogenesis may offer new and efficacious treatment strategies for this currently untreatable disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Masculino , Humanos , Femenino , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Ratones Transgénicos , Fenotipo , Ataxina-3/genética
3.
Sci Rep ; 11(1): 7252, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790304

RESUMEN

Effective implementation of antibiotic stewardship, especially in critical care, is limited by a lack of direct comparative investigations on how different antibiotics impact the microbiota and antibiotic resistance rates. We investigated the impact of two commonly used antibiotics, third-generation cephalosporins (3GC) and piperacillin/tazobactam (TZP) on the endotracheal, perineal and faecal microbiota of intensive care patients in Australia. Patients exposed to either 3GC, TZP, or no ß-lactams (control group) were sampled over time and 16S rRNA amplicon sequencing was performed to examine microbiota diversity and composition. While neither treatment significantly affected diversity, numerous changes to microbiota composition were associated with each treatment. The shifts in microbiota composition associated with 3GC exposure differed from those observed with TZP, consistent with previous reports in animal models. This included a significant increase in Enterobacteriaceae and Enterococcaceae abundance in endotracheal and perineal microbiota for those administered 3GC compared to the control group. Culture-based analyses did not identify any significant changes in the prevalence of specific pathogenic or antibiotic-resistant bacteria. Exposure to clinical antibiotics has previously been linked to reduced microbiota diversity and increased antimicrobial resistance, but our results indicate that these effects may not be immediately apparent after short-term real-world exposures.


Asunto(s)
Cefalosporinas/administración & dosificación , Enterobacteriaceae , Microbiota/efectos de los fármacos , Combinación Piperacilina y Tazobactam/administración & dosificación , Adulto , Animales , Programas de Optimización del Uso de los Antimicrobianos , Enfermedad Crítica , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/crecimiento & desarrollo , Femenino , Humanos , Masculino , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
4.
Gut Microbes ; 12(1): 1802209, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32991816

RESUMEN

The colonic mucus layer, comprised of highly O-glycosylated mucins, is vital to mediating host-gut microbiota interactions, yet the impact of dietary changes on colonic mucin O-glycosylation and its associations with the gut microbiota remains unexplored. Here, we used an array of omics techniques including glycomics to examine the effect of dietary fiber consumption on the gut microbiota, colonic mucin O-glycosylation and host physiology of high-fat diet-fed C57BL/6J mice. The high-fat diet group had significantly impaired glucose tolerance and altered liver proteome, gut microbiota composition, and short-chain fatty acid production compared to normal chow diet group. While dietary fiber inclusion did not reverse all high fat-induced modifications, it resulted in specific changes, including an increase in the relative abundance of bacterial families with known fiber digesters and a higher propionate concentration. Conversely, colonic mucin O-glycosylation remained similar between the normal chow and high-fat diet groups, while dietary fiber intervention resulted in major alterations in O-glycosylation. Correlation network analysis revealed previously undescribed associations between specific bacteria and mucin glycan structures. For example, the relative abundance of the bacterium Parabacteroides distasonis positively correlated with glycan structures containing one terminal fucose and correlated negatively with glycans containing two terminal fucose residues or with both an N-acetylneuraminic acid and a sulfate residue. This is the first comprehensive report of the impact of dietary fiber on the colonic mucin O-glycosylation and associations of these mucosal glycans with specific gut bacteria.


Asunto(s)
Bacterias/aislamiento & purificación , Colon/microbiología , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal , Mucinas/metabolismo , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL , Mucinas/química , Polisacáridos/metabolismo
5.
Front Microbiol ; 9: 1618, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072976

RESUMEN

There is growing public interest in the use of fiber supplements as a way of increasing dietary fiber intake and potentially improving the gut microbiota composition and digestive health. However, currently there is limited research into the effects of commercially available fiber supplements on the gut microbiota. Here we used an in vitro human digestive and gut microbiota model system to investigate the effect of three commercial fiber products; NutriKane™, Benefiber® and Psyllium husk (Macro) on the adult gut microbiota. The 16S rRNA gene amplicon sequencing results showed dramatic fiber-dependent changes in the gut microbiota structure and composition. Specific bacterial OTUs within the families Bacteroidaceae, Porphyromonadaceae, Ruminococcaceae, Lachnospiraceae, and Bifidobacteriaceae showed an increase in the relative abundances in the presence of one or more fiber product(s), while Enterobacteriaceae and Pseudomonadaceae showed a reduction in the relative abundances upon addition of all fiber treatments compared to the no added fiber control. Fiber-specific increases in SCFA concentrations showed correlation with the relative abundance of potential SCFA-producing gut bacteria. The chemical composition, antioxidant potential and polyphenolic content profiles of each fiber product were determined and found to be highly variable. Observed product-specific variations could be linked to differences in the chemical composition of the fiber products. The general nature of the fiber-dependent impact was relatively consistent across the individuals, which may demonstrate the potential of the products to alter the gut microbiota in a similar, and predictable direction, despite variability in the starting composition of the individual gut microbiota.

6.
J Antimicrob Chemother ; 73(6): 1492-1500, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481596

RESUMEN

Objectives: To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Methods: Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. Results: MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. Conclusions: This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.


Asunto(s)
Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica , Genes MDR , Proteínas de Transporte de Membrana/genética , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Clorhexidina/farmacología , Desinfectantes/farmacología , Humanos
7.
Front Microbiol ; 9: 3356, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30728821

RESUMEN

The tropical marine environments of northern Australia encompasses a diverse range of geomorphological and oceanographic conditions and high levels of productivity and nitrogen fixation. However, efforts to characterize phytoplankton assemblages in these waters have been restricted to studies using microscopic and pigment analyses, leading to the current consensus that this region is dominated by large diatoms, dinoflagellates, and the marine cyanobacterium Trichodesmium. During an oceanographic transect from the Arafura Sea through the Torres Strait to the Coral Sea, we characterized prokaryotic and eukaryotic phytoplankton communities in surface waters using a combination of flow cytometry and Illumina based 16S and 18S ribosomal RNA amplicon sequencing. Similar to observations in other marine regions around Australian, phytoplankton assemblages throughout this entire region were rich in unicellular picocyanobacterial primary producers while picoeukaryotic phytoplankton formed a consistent, though smaller proportion of the photosynthetic biomass. Major taxonomic groups displayed distinct biogeographic patterns linked to oceanographic and nutrient conditions. Unicellular picocyanobacteria dominated in both flow cytometric abundance and carbon biomass, with members of the Synechococcus genus dominating in the shallower Arafura Sea and Torres Strait where chlorophyll a was relatively higher (averaging 0.4 ± 0.2 mg m-3), and Prochlorococcus dominating in the oligotrophic Coral Sea where chlorophyll a averaged 0.13 ± 0.07 mg m-3. Consistent with previous microscopic and pigment-based observations, we found from sequence analysis that a variety of diatoms (Bacillariophyceae) exhibited high relative abundance in the Arafura Sea and Torres Strait, while dinoflagellates (Dinophyceae) and prymnesiophytes (Prymnesiophyceae) were more abundant in the Coral Sea. Ordination analysis identified temperature, nutrient concentrations and water depth as key drivers of the region's assemblage composition. This is the first molecular and flow cytometric survey of the abundance and diversity of both prokaryotic and picoeukaryotic phytoplankton in this region, and points to the need to include the picocyanobacterial populations as an essential oceanic variable for sustained monitoring in order to better understand the health of these important coastal waters as global oceans change.

8.
Sci Rep ; 7(1): 14312, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29085002

RESUMEN

The introduction of different nutrient and energy sources during weaning leads to significant changes in the infant gut microbiota. We used an in vitro infant digestive and gut microbiota model system to investigate the effect of four commercially available cereal products based on either wheat, sorghum, rice or oats, on the gut microbiota of six infants. Our results indicated cereal additions induced numerous changes in the gut microbiota composition. The relative abundance of bacterial families associated with fibre degradation, Bacteroidaceae, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Ruminococcaceae and Veillonellaceae increased, whilst the abundance of Enterobacteriaceae decreased with cereal additions. Corresponding changes in the production of SCFAs showed higher concentrations of acetate following all cereal additions, whilst, propionate and butyrate varied between specific cereal additions. These cereal-specific variations in the concentrations of SCFAs showed a moderate correlation with the relative abundance of potential SCFA-producing bacterial families. Overall, our results demonstrated clear shifts in the abundance of bacterial groups associated with weaning and an increase in the production of SCFAs following cereal additions.


Asunto(s)
Avena/metabolismo , Bacterias/clasificación , Microbioma Gastrointestinal/fisiología , Oryza/metabolismo , Sorghum/metabolismo , Triticum/metabolismo , Bacterias/aislamiento & purificación , Fibras de la Dieta/metabolismo , Grano Comestible/metabolismo , Heces/microbiología , Femenino , Humanos , Lactante , Masculino
9.
Front Microbiol ; 6: 333, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954261

RESUMEN

The era of antibiotics as a cure-all for bacterial infections appears to be coming to an end. The emergence of multidrug resistance in many hospital-associated pathogens has resulted in "superbugs" that are effectively untreatable. Multidrug efflux pumps are well known mediators of bacterial drug resistance. Genome sequencing efforts have highlighted an abundance of putative efflux pump genes in bacteria. However, it is not clear how many of these pumps play a role in antimicrobial resistance. Efflux pump genes that participate in drug resistance can be under tight regulatory control and expressed only in response to substrates. Consequently, changes in gene expression following antimicrobial shock may be used to identify efflux pumps that mediate antimicrobial resistance. Using this approach we have characterized several novel efflux pumps in bacteria. In one example we recently identified the Acinetobacterchlorhexidine efflux protein (AceI) efflux pump in Acinetobacter. AceI is a prototype for a novel family of multidrug efflux pumps conserved in many proteobacterial lineages. The discovery of this family raises the possibility that additional undiscovered intrinsic resistance proteins may be encoded in the core genomes of pathogenic bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...